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Abstract
A-statistics is defined in the context of the Lie algebra sl(n + 1). Some
thermal properties ofA-statistics are investigated under the assumption that the
particles interact only via statistical interaction imposed by the Pauli principle
of A-statistics. Apart from the general case, three particular examples are
studied in more detail: (a) the particles have one and the same energy and
chemical potential; (b) equidistant energy spectrum; (c) two species of particles
with one and the same energy and chemical potential within each class. The
grand partition functions and the average number of particles are among the
thermodynamical quantities written down explicitly.

PACS numbers: 02.20.+b, 03.65.Fd, 05.30.-d, 05.70.Ce

1. Introduction

The first attempts to generalize canonical quantum statistics go back to Gentile [1], who
considered a statistics which is intermediate between Fermi–Dirac (FD) and Bose–Einstein
(BE) statistics. More precisely, Gentile introduced a statistics with the property that the
maximal occupation number of particles on any orbital is larger than 1 (hence the statistics is
not FD), but is finite (hence the statistics is not BE). Since that time, various generalizations
of quantum statistics have been proposed both in quantum field theory [2–4] and in condensed
matter physics [5–7], some of them inspired by new developments in conformal field theories
and related lattice models (see [8] and references therein) and in quantum groups [9, 10]. For
an overview of generalized quantum statistics formulated in terms of deformed algebras or
generalized Fock spaces, we refer the reader to [11, 12].

In 1950, Wigner [2] showed (on a simple example) that there might exist a statistics which
is compatible with the principles of quantum theory without the necessity that the position
and the momentum operators satisfy the canonical commutation relations. This more general
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statistics discovered by Wigner turned out to be the para-Bose (pB) statistics of one pair of
creation and annihilation operators (CAOs) [13]. Three years later, Green introduced both pB
and para-Fermi (pF) statistics in the more general frame of quantum field theory [3].

In the present paper we study the macroscopic properties of a certain type of statistics,
called A-statistics. It was introduced in [14, 15] and studied further from the microscopic
point of view in [16]. A-statistics resembles the pF statistics insofar as the CAOs of both
statistics generate simple Lie algebras: any n pairs of parafermions generate the orthogonal
Lie algebra so(2n + 1) ≡ Bn [17, 18], whereas any n pairs of A-CAOs generate the Lie
algebra sl(n + 1) ≡ An (which explains the name A-statistics). A-statistics also resembles
Bose statistics: similar to bosons, the A-creation (A-annihilation) operators commute with
each other. The Fock representations for pF, pB and A-statistics are constructed in one and
the same way: they are generated out of a vacuum by creation operators only. The Fock
representations in all three cases are labelled by a positive integer p = 1, 2, . . . , called the
order of the statistics. Moreover the metric within any Fock space is defined with the usual
Fock space technique. It is essential to point out that unlike the CAOs of parastatistics, the
A-creation operators a+

1 , . . . , a
+
n (theA-annihilation operators a−

1 , . . . , a
−
n ) commute with each

other. For this reason (apart from in the trivial case) they differ essentially from the CAOs
of the g-ons [19] or from the CAOs associated with solutions of the spectral Yang–Baxter
equations [20], since in these works relations of the type a−

i a
−
j = Rija

−
j a

−
i are imposed.

In the case of pF statistics of order p, no more than p particles can be accommodated on
any orbital. The fillings of the orbitals are however completely independent of each other. Here
arises one of the essential differences fromA-statistics. The Pauli principle forA-statistics says
that if the order of the statistics isp, then the system cannot accommodate more thanp particles.
Thus, if p = 10 and 10 particles are already accommodated on the first orbital, then no more
particles can be added to any orbital. For this reason A-statistics gives perhaps the simplest
example of an exclusion statistics [6, 7]: the number of available places on a certain orbital
depends on how many particles (independently of where they are) are already accommodated
in the system (see [16] for more discussions of this issue). Here it is an appropriate place to
say that the word particle is used in the context of this paper as a collective name for particles,
quasiparticles, excitations etc.

In section 2 we recall briefly the definition and the main microscopic properties of A-
statistics. Like for pF statistics, the CAOs a±

1 , . . . , a
±
n of sl(n + 1) are defined via triple

commutation relations (see (2.1)). These triple relations define completely the Lie algebra
sl(n + 1), a property which was indicated for the first time by Jacobson [21]. For this reason
we call the CAOs of A-statistics Jacobson generators.

In section 3 we write down explicitly the sl(n+ 1) grand partition function (GPF) Z(p, n)
and the average number of particles in the system N̄(p, n)—see equations (3.9) and (3.16)—
under the general assumption that the energy of each particle on orbital i is εi . In this contextn is
the number of orbitals of the system and p is the order of the statistics, a positive integer, which
labels the inequivalent Fock space representations; see (2.4). Because of the Pauli principle
the orbitals cannot be considered as independent subsystems (as in BE or FD statistics): the
filling of any orbital depends on the states of the other orbitals. Therefore we derive the
thermodynamical quantities directly for the n-orbital system, assuming that it is in thermal and
diffusive contact and in thermal and diffusive equilibrium with a much bigger reservoir. As we
shall see, the kth complete symmetric functions—see (3.5)—turn out to provide a particularly
convenient tool for the description of the thermal properties of the system.

In the remaining three sections we consider different specializations of the general settings
of section 3. First (section 4) we assume that all orbitals (i.e. single-particle states) have one and
the same energy and chemical potential. We express the GPF and the ensemble average number
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of particles via hypergeometric functions (see, for instance, equations (4.5) and (4.17)). Two
special cases are considered in some more detail. The first one corresponds to n = 1. Here,
the p = 1 representation leads to the FD distribution function, whereas p = ∞ corresponds to
the BE distribution. For all other values of p the distribution function is intermediate between
the FD and BE distributions. The second case, corresponding to p = 1—see figure 2—
leads to the so-called hard-core fermions or hard-core bosons (locally they coincide). Such
particles are natural ingredients in multi-band Hubbard or various Heisenberg spin models,
where configurations which contain more than one particle on each lattice site are strictly
prohibited (see [16] for more discussions on this topic).

In section 5 a model with equidistant energy levels is considered. The orbitals are
labelled by the energy. The GPF is written in terms of the so-called q-generalized or basic
hypergeometric functions; see (5.10). The conclusion is that for big energy gaps or at very
low temperatures all particles ‘condense’ on the lowest-energy orbital. The case with p = 1
is considered in more detail.

In section 6 we consider two species of particle. Those of the first kindA (of kindB) have
one and the same energy εA (εB) and chemical potential µA (µB). Apart from the GPF and
the average number of particles N̄(p, n), also the thermal average N̄(p, n)A of the number of
particles of kind A and that of kind B are computed. For the example of sl(5) with p = 4 the
general accommodation properties are demonstrated. For instance, the region with εA < µA
and εB > µB is populated most probably with particles of the first kind—see figure 4—whereas
the region with εA < µA and εB < µB is populated with approximately the same number of
particles of both kinds—see figure 3.

Throughout the paper we use the following notation and abbreviations (some of them
standard):

CAOs: creation and annihilation operators;
GPF: grand partition function;
N: all positive integers;
[a, b] = ab − ba.

2. Microscopic properties of A-statistics

In this section we list briefly the basic definitions and some of the microscopic properties of
the A-statistics. In particular, we shall define

• the CAOs of A-statistics and their ‘triple commutation’ relations,
• the Fock spaces of A-statistics, and the corresponding Pauli principle,
• the Hamiltonian being studied in these Fock spaces.

For more details and a derivation of the results we refer the reader to [14–16].
The CAOs of A-statistics are equal to the Jacobson CAOs a±

1 , a
±
2 , . . . , a

±
n of sl(n + 1),

which are defined as 2n operators satisfying the relations

[[a+
i , a

−
j ], a+

k ] = δkj a
+
i + δij a

+
k

[[a+
i , a

−
j ], a−

k ] = −δkia−
j − δij a

−
k

[a+
i , a

+
j ] = [a−

i , a
−
j ] = 0.

(2.1)

The sl(n + 1) generators expressed in terms of the Jacobson CAOs read

ei0 = a+
i e0i = a−

i eii − e00 = [a+
i , a

−
i ]

eij = [a+
i , a

−
j ] i �= j = 1, . . . , n.

(2.2)
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The above {eij |i, j = 0, 1, . . . , n} are the known Weyl generators of gl(n + 1):

[eij , ekl] = δjkeil − δilekj . (2.3)

As in the case of parastatistics [3] the Fock spacesW(p, n) of theA-statistics are labelled
by an order of the statistics p, where p runs over all positive integers: p ∈ N. Each state space
W(p, n) is defined by the requirement that it contains a vector |0〉, a vacuum, such that

a−
i a

+
j |0〉 = δijp|0〉 a−

k |0〉 = 0 p ∈ N i, j, k = 1, . . . , n. (2.4)

The Fock spaces are finite-dimensional irreducible sl(n + 1)-modules. All vectors

(a+
1 )
l1(a+

2 )
l2 · · · (a+

n)
ln |0〉 (2.5)

subject to the restriction

l1 + l2 + · · · + ln � p (2.6)

constitute a basis in W(p, n).
Here a remark is in order. The linear span of all vectors (2.5) for any l1, . . . , ln ∈

{0, 1, 2, . . .}, namely without the restriction (2.6), is an infinite-dimensional sl(n + 1)-module
W̃ (p, n). The latter is however not irreducible. W̃ (p, n) contains an (infinite-dimens-
ional) invariant subspace Winv(p, n), which is the linear envelope of all vectors (2.5) with
l1 + l2 + · · · + ln > p. Then W(p, n) is a factor module of W̃ (p, n) with respect to Winv(p, n)

(and the vectors (2.5) subject to the restriction (2.6) are representatives of the corresponding
equivalent classes in W̃ (p, n)/Winv(p, n)).

Define a Hermitian form ( , ) on W(p, n) with the usual Fock space technique, namely
postulating (in addition to a−

i |0〉 = 0) that

(a) 〈0|0〉 = 1

(b) 〈0|a+
i = 0 i = 1, . . . , n

(c) ((a+
1 )
m1(a+

2 )
m2 · · · (a+

n)
mn |0〉, (a+

1 )
l1(a+

2 )
l2 · · · (a+

n)
ln |0〉)

= 〈0|(a−
n )

mn · · · (a−
2 )

m2(a−
1 )

m1(a+
1 )
l1(a+

2 )
l2 · · · (a+

n)
ln |0〉).

(2.7)

With respect to this form any two different vectors (2.5) are orthogonal. All vectors

|p; l1, . . . , ln〉 =
√
(p −∑n

j=1 lj )!

p!

(a+
1 )
l1 · · · (a+

n)
ln

√
l1!l2! · · · ln!

|0〉 l1 + l2 + · · · + ln � p (2.8)

constitute an orthonormal basis inW(p, n), i.e. (, ) is a scalar product. Moreover the Hermitian
conjugate to a−

i is a+
i , (a−

i )
∗ = a+

i , which is an important physical requirement.
The transformation of the basis (2.8) under the action of the Jacobson CAOs reads

a+
i |p; l1, . . . , li , . . . , ln〉 =

√√√√(li + 1)

(
p −

n∑
j=1

lj

)
|p; l1, . . . , li−1, li + 1, li+1, . . . , ln〉 (2.9)

a−
i |p; l1, . . . , li , . . . , ln〉 =

√√√√li(p −
n∑
j=1

lj + 1

)
|p; l1, . . . , li−1, li − 1, li+1, . . . , ln〉. (2.10)

For further use we extend W(p, n) to an irreducible gl(n + 1) module, setting (below and
throughout Ni = eii , i = 0, 1, . . . , n)

N0|p; l1, l2, . . . , ln〉 =
(
p −

n∑
i=1

li

)
|p; l1, l2, . . . , ln〉. (2.11)

Then

Ni |p; l1, l2, . . . , ln〉 = li |p; l1, l2, . . . , ln〉 i = 1, . . . , n. (2.12)
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The basis vectors |p; l1, . . . , ln〉 in W(p, n) are in one-to-one correspondence with
all distinct n-tuples (l1, . . . , ln) with integer non-negative entries l1, . . . , ln such that
l1 + · · · + ln � p. On the basis of this we often write (l1, . . . , ln) instead of |p; l1, . . . , ln〉.

In the present paper we will study some macroscopic properties of the A-statistics for a
Hamiltonian which is a simple sum:

H =
n∑
i=1

εiNi. (2.13)

This Hamiltonian can also be written entirely via CAOs:

H = 1

n + 1

n∑
i=1

εi

(
p + n[a+

i , a
−
i ] −

n∑
k �=i=1

[a+
k , a

−
k ]

)
. (2.14)

Clearly, H is an element from the Cartan subalgebra of gl(n + 1). Since H |0〉 = 0, the
energy of the vacuum is zero. The commutation relations of H with the CAOs read

[H, a±
i ] = ±εia±

i . (2.15)

If |E〉 is a state with energy E, then

Ha±
i |E〉 = (E ± εi)a

±
i |E〉 (2.16)

and therefore each a+
i (a−

i ) can be interpreted as an operator creating (annihilating) a particle
(quasiparticle, excitation) on orbital i (with energy εi). Since

H |p; l1, l2, . . . , ln〉 = (ε1l1 + ε2l2 + · · · + εnln)|p; l1, l2, . . . , ln〉 (2.17)

|p; l1, l2, . . . , ln〉 is interpreted as a state with l1 particles on the first orbital, l2 particles on the
second orbital and so on, and ln particles on the last orbital.

The restriction (2.6) expresses the Pauli principle of the A-statistics in W(p, n). It says
that the system can accommodate up to p, but no more than p particles. For this reason
the A-statistics falls into the class of exclusion statistics in the broad sense: the number of
allowed particles that can be accommodated on a certain orbital depends on the number of
particles that have already been accommodated in the system. This is perhaps the simplest
form of a statistical interaction: the Hamiltonian (2.13) has the form of a ‘free’ Hamiltonian
and the interaction is introduced via a change of statistics. It will be interesting to find out
whether one can obtain the same results adding to the Hamiltonian (2.13) an interaction term
and changing the statistics to Bose statistics. It is known that a similar phenomenon can take
place in quantum mechanics [22].

3. The grand partition function

Here we shall study some macroscopic properties of the A-statistics. For our considerations it
is irrelevant whether the different orbitals correspond to different particles, to different energy
levels of particles of the same kind or to different internal states of the particles. The only
assumption is that they satisfy the Pauli principle for A-statistics.

As usual, we assume that the system is in thermal and diffusive contact and in thermal and
diffusive equilibrium with a much bigger reservoir. Denote by τ its (fundamental) temperature
and let µi be the chemical potential for the particles on orbital i.

The general principles (and approximations) of statistical thermodynamics assert that the
probability P(p, n; r) for the system to be in a (quantum) state r = (l1, . . . , ln)with the number
of particles Nr = l1 + · · · + ln and energy Er = l1ε1 + · · · + lnεn is given by the expression

P(p, n; r) = exp(
∑n

i=1 τ
−1(µi − εi)li)

Z(p, n)
. (3.1)
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The numerator in (3.1) is the Gibbs factor of the system in the state r = (l1, . . . , ln) andZ(p, n)
is the GPF, namely the sum of the Gibbs factors with respect to all states (l1, . . . , ln) of the
system, i.e. over all possible non-negative integers l1, . . . , ln such that 0 � l1 + · · · + ln � p:

Z(p, n) =
∑

0�l1+···+ln�p

(
exp

(
µ1 − ε1

τ

))l1 (
exp

(
µ2 − ε2

τ

))l2
· · ·
(

exp

(
µn − εn

τ

))ln
.

(3.2)

In terms of the notation

xi = exp

(
µi − εi

τ

)
i = 1, . . . , n (3.3)

we rewrite (3.2) as follows:

Z(p, n) =
∑

0�l1+···+ln�p
x
l1
1 x

l2
2 · · · xlnn =

p∑
k=0

∑
l1+···+ln=k

x
l1
1 x

l2
2 · · · xlnn . (3.4)

In the general setting, which we consider so far, it is appropriate to introduce the complete
symmetric functions hk(x1, . . . , xn), k = 0, 1, . . . , which play an important role in the theory
of symmetric functions [23]. The kth complete symmetric function hk(x1, . . . , xn) is the sum
of all distinct monomials of total degree k of the variables x1, x2, . . . , xn:

hk(x1, . . . , xn) =
∑

l1+···+ln=k
x
l1
1 x

l2
2 · · · xlnn . (3.5)

For example, h0(x1, x2, x3) = 1, h1(x1, x2, x3) = x1 + x2 + x3 and

h2(x1, x2, x3) = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3.

In terms of hk(x1, . . . , xn), the GPF Z(p, n) reads

Z(p, n) =
p∑
k=0

hk(x1, . . . , xn). (3.6)

Clearly, hk(x1, . . . , xn)/Z(p, n) yields the probability for the system to contain k particles.
In order to evaluate the sum (3.6) we use the following generating function [23, (I.2.5)]:

∞∑
k=0

hk(x1, . . . , xn)t
k = 1

(1 − x1t)(1 − x2t) · · · (1 − xnt)
. (3.7)

Now compute
∞∑
p=0

Z(p, n)tp =
∞∑
p=0

( p∑
k=0

hk(x1, . . . , xn)

)
tp

=
∞∑
k=0

∞∑
p=k

hk(x1, . . . , xn)t
p =

∞∑
k=0

∞∑
r=0

hk(x1, . . . , xn)t
p+r

=
( ∞∑
k=0

hk(x1, . . . , xn)t
k

)( ∞∑
r=0

t r
)

= 1

(1 − x1t)(1 − x2t) · · · (1 − xnt)

1

1 − t
=

∞∑
p=0

hp(x1, . . . , xn, 1)tp.

Hence
p∑
k=0

hk(x1, . . . , xn) = hp(x1, . . . , xn, 1) = hp(x1, . . . , xi−1, 1, xi, . . . , xn). (3.8)
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We have written the last term in the rhs of (3.8) for further use. It follows from the property that
hp is symmetric with respect to its arguments and therefore these arguments can be reordered
in an arbitrary way.

Applying (3.8) to (3.6) we obtain

Z(p, n) =
p∑
k=0

hk(x1, . . . , xn) = hp(x1, . . . , xn, 1). (3.9)

Using the GPF (3.9) one can determine various other thermodynamical quantities and in
particular the average number of particles in the system.

According to (3.1) the probability P(p, n; l1, . . . , ln) for the system to be in the state
r = (l1, . . . , ln) with Nr = l1 + · · · + ln particles reads (in terms of the variables xi)

P(p, n; l1, . . . , ln) = x
l1
1 x

l2
2 · · · xlnn

Z(p, n)
. (3.10)

Then the average number of particles in the system is

N̄(p, n) =
∑

0�l1+···+ln�p
(l1 + · · · + ln)P(p, n; l1, . . . , ln) =

∑
0�l1+···+ln�p

(l1 + · · · + ln)
x
l1
1 · · · xlnn
Z(p, n)

which can also be written as

N̄(p, n) =
n∑
k=1

xk ∂xk lnZ(p, n) =
n∑
k=1

τ ∂µk lnZ(p, n). (3.11)

Since∑
0�l1+···+ln�p

(l1 + · · · + ln)x
l1
1 · · · xlnn =

p∑
k=0

k
∑

l1+···+ln=k
x
l1
1 · · · xlnn =

p∑
k=0

khk(x1, . . . , xn) (3.12)

N̄(p, n) can also be expressed via the complete symmetric functions:

N̄(p, n) =
∑p

k=0 khk(x1, . . . , xn)

hp(x1, . . . , xn, 1)
. (3.13)

In order to further simplify (3.13), note that according to (3.8)

hp−1(x1, . . . , xn, xn+1, 1) =
p−1∑
k=0

hk(x1, . . . , xn, xn+1).

Hence, setting xn+1 = 1 and using again (3.8) one has

hp−1(x1, . . . , xn, 1, 1) =
p−1∑
k=0

hk(x1, . . . , xn, 1) =
p−1∑
k=0

k∑
q=0

hq

where here and below hq ≡ hq(x1, . . . , xn). Therefore

hp−1(x1, . . . , xn, 1, 1) =
p−1∑
k=0

k∑
q=0

hq =
p−1∑
q=0

p−1∑
k=q

hq =
p−1∑
q=0

(p − q)hq. (3.14)

From here and (3.8) we deduce

php(x1, . . . , xn, 1)− hp−1(x1, . . . , xn, 1, 1) =
p∑
k=0

phk −
p−1∑
k=0

(p − k)hk

=
p∑
k=0

khk(x1, . . . , xn). (3.15)
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Combining (3.13) with (3.15) we finally obtain

N̄(p, n) = p − hp−1(x1, . . . , xn, 1, 1)

hp(x1, . . . , xn, 1)
. (3.16)

As expected, the average number of particles accommodated in the system cannot exceed p.
Similarly for the average energy Ē(p, n) of the system one has

Ē(p, n) =
∑

0�l1+···+ln�p
(ε1l1 + · · · + εnln)

x
l1
1 x

l2
2 · · · xlnn

Z(p, n)

and therefore

Ē(p, n) =
n∑
i=1

εixi ∂xi ln hp(x1, . . . , xn, 1) =
n∑
i=1

εixi ∂xi lnZ(p, n). (3.17)

Let us determine the equilibrium distribution of the particles on an arbitrarily chosen
orbital i. According to (3.10), P(p, n; l1, . . . , ln) yields the probability for the system to be
in the state (l1, . . . , ln), which means that l1 particles are accommodated on the first orbital,
l2 particles on the second and so on. Therefore the probability P(p, n; li) that li particles are
accommodated on the ith orbital is

P(p, n; li) =
∑

0�l1+···+li−1+li+1+···+ln�p−li

x
l1
1 x

l2
2 · · · xlnn

Z(p, n)
. (3.18)

For the average number of particles l̄i on the ith orbital we have

l̄i =
p∑
li=0

liP(p, n; li) =
∑

0�l1+···+ln�p
li
x
l1
1 x

l2
2 · · · xlnn

Z(p, n)
= 1

Z(p, n)
xi ∂xi

∑
0�l1+···+ln�p

x
l1
1 x

l2
2 · · · xlnn .

Hence

l̄i = xi ∂xi ln hp(x1, . . . , xn, 1) = xi ∂xi lnZ(p, n) = τ ∂µi lnZ(p, n) i = 1, . . . , n.

(3.19)

It follows that the average number of particles NA(p, n) on, say, the first s orbitals is

NA(p, n) =
s∑
i=1

l̄i =
s∑
i=1

xi ∂xi lnZ(p, n) =
s∑
i=1

τ ∂µi lnZ(p, n). (3.20)

Evidently, the average energy Ēi of the particles on the ith orbital is

Ēi = εixi ∂xi lnZ(p, n) = εiτ ∂µi lnZ(p, n) i = 1, . . . , n. (3.21)

Let us note that the expression for the probability (3.18) can be also written in a more
compact form:

P(p, n; li) = x
li
i

Z(p, n)

∑
0�l1+···+li−1+li+1+···+ln�p−li

x
l1
1 · · · xli−1

i−1x
li+1
i+1 · · · xlnn

= x
li
i

Z(p, n)

p−li∑
k=0

∑
l1+···+li−1+li+1+···+ln=k

x
l1
1 · · · xli−1

i−1x
li+1
i+1 · · · xlnn

= x
li
i

Z(p, n)

p−li∑
k=0

hk(x1, . . . , xi−1, xi+1, . . . , xn).
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Applying (3.8) to the rhs, we obtain the required expression for the probability of having li
particles accommodated on the ith orbital:

P(p, n; li) = hp−li (x1, . . . , xi−1, 1, xi+1 . . . xn)x
li
i

Z(p, n)
= hp−li (x1, . . . , xi−1, 1, xi+1 . . . xn)x

li
i

hp(x1, . . . , xn, 1)
.

(3.22)

Some other thermodynamical functions can be determined too. For instance, from the
general expression for the entropy

S(p, n) = Ē(p, n)−∑n
i=1 µi l̄i

T
+ kB lnZ(p, n) (3.23)

and (3.17) there comes

S(p, n) = kB

τ

n∑
i=1

(εi − µi)l̄i + kB lnZ(n, p)

= kB

τ

n∑
i=1

(εi − µi)xi ∂xi lnZ(p, n) + kB lnZ(n, p) (3.24)

which can also be written as

S(p, n) = kB
(
τ ∂τ + 1

)
lnZ(p, n) = kB ∂τ τ lnZ(p, n) (3.25)

or equivalently

S(p, n) = kBτ ∂τ lnZ(p, n)− kB

τ
) (3.26)

where

) = −τ lnZ(p, n) (3.27)

is the thermodynamical potential, another relevant thermodynamical function (in order to
be consistent with the notation used so far we have replaced in (3.24)–(3.27) the Kelvin
temperature T with the fundamental temperature τ = kBT , kB being the Boltzmann constant).

Before proceeding further with some particular cases of the Hamiltonian (2.13), we make
a small deviation in order to draw a parallel between the A-statistics and Bose statistics. To
this end we introduce new CAOs

B(p)±i = a±
i√
p

i = 1, . . . , n p ∈ N (3.28)

inW(p, n). It is easy to verify that for large values of p these operators satisfy ‘almost Bose’
commutation relations [16]:

[B(p)+i , B(p)
+
j ] = [B(p)−i , B(p)

−
j ] = 0 exact commutators (3.29)

[B(p)−i , B(p)
+
j ] � δij if l1 + l2 + · · · + ln � p. (3.30)

Therefore the representations of B(p)±i in the Fock spaces W(p, n) with large values of p,
restricted to states with a small number l1 + l2 + · · · + ln � p of accommodated particles,
provide good approximations to Bose CAOs (in finite-dimensional spaces). For this reason
the operators B(p)±i are said to be quasi-Bose CAOs (of order p). In the limit p → ∞
these operators indeed become Bose operators [16]. Therefore, parallel to quon statistics
(see [24] and references therein), A-statistics (for large values of p) can be considered as a
theory allowing small violations of canonical quantum statistics in nonrelativistic quantum
field theory.
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Coming back to the macroscopic considerations, we observe that for t = 1 the rhs of (3.7)
reduces to the Bose GPF ZBose(n) of a system with n orbitals, which are filled independently
of each other:

∞∑
k=0

hk(x1, . . . , xn) = 1

(1 − x1)(1 − x2) · · · (1 − xn)
= ZBose(n). (3.31)

Therefore, see (3.9),

ZBose(n)− Z(p, n) =
∞∑

k=p+1

hk(x1, . . . , xn). (3.32)

For sufficiently large values of p the rhs of (3.32), which is always positive, can be made
smaller than any positive number and therefore can be neglected. This is further confirmation
(now from a macroscopic point of view) that A-statistics reduces to Bose statistics as the
order of the statistics p becomes large. An analogue of equation (3.32) for q-statistics is also
available [25, equation (5.14)].

In the following sections we shall consider some examples, the first one with all energies
equal to each other.

4. The most degenerate case

Here we consider an ensemble of particles with a Hamiltonian

H = ε

n∑
i=1

Ni (4.1)

i.e. all orbitals have the same energy, and additionally we assume that they all have the same
chemical potential, i.e.,

ε1 = ε2 = · · · = εn = ε

µ1 = · · · = µn = µ �⇒ x1 = x2 = · · · = xn = x.
(4.2)

In this case the orbitals label internal degrees of freedom of the particles (spin, colour, flavour)
or, as more particular examples, the local orbitals of any multi-band Hubbard model or SU(N)
Heisenberg chain.

Most of the thermodynamical functions follow directly from the results of the previous
section after the specialization (4.2), but they can be written in a more explicit form. To this end
one has to take into account that the number of terms in the rhs of (3.5) is (k+n−1)!/k!(n−1)!.
Therefore

hk(x, . . . , x︸ ︷︷ ︸
n times

) =
(
k + n− 1

k

)
xk. (4.3)

Then equation (3.9) yields

Z(p, n) = hp(x, . . . , x︸ ︷︷ ︸
n times

, 1) =
p∑
k=0

(
k + n− 1

k

)
xk. (4.4)

This sum can be rewritten as

Z(n, p) =
∞∑
k=0

(
k + n− 1

k

)
xk −

∞∑
k=p+1

(
k + n− 1

k

)
xk

= 1

(1 − x)n
−
(
n + p

p + 1

)
xp+1

2F1

(
1, n + p + 1

p + 2
; x
)

(4.5)
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where 2F1 is the classical hypergeometric function [26]. Compared to (4.4), the expression
in (4.5) looks at first sight a more complicated way of rewriting Z(n, p). Note, however, that
the first term in the rhs of (4.5) is the Bose GPF

Z(n)Bose =
∞∑
k=0

(
k + n− 1

k

)
xk = 1

(1 − x)n
. (4.6)

Therefore, the second term is responsible for the difference between Bose and A-statistics. It
carries, so to speak, the statistical interaction between the particles.

Using Euler’s transformation formula for hypergeometric functions [26, equations (1),
(3), (15)], i.e.

2F1

(
a, b

c
; x
)

= (1 − x)c−a−b2F1

(
c − a, c − b

c
; x
)

(4.7)

equation (4.5) can also be rewritten as

Z(n, p) = 1

(1 − x)n

(
1 −

(
n + p

p + 1

)
xp+1

2F1

(
p + 1, 1 − n

p + 2
; x
))

. (4.8)

The hypergeometric series appearing in (4.8) has the advantage that it is a terminating series
(consisting of n terms), since one of its numerator parameters, 1 − n, is a negative integer.
More explicitly, we can rewrite (4.8) as

Z(n, p) = 1

(1 − x)n

(
1 − (n + p)!

p!

n−1∑
k=0

(−1)k
xp+k+1

(p + k + 1)k!(n− k − 1)!

)
. (4.9)

Equation (4.4) is convenient to deal with in those cases where the order of the statistics p
is a small number (and any number of orbitals n). In contrast, the expression (4.9) is more
appropriate for a relatively small number of orbitals (and any order of the statistics p).

In the case of only one orbital, i.e. for the sl(2) GPF, equation (4.4) yields

Z(p, 1) =
p∑
k=0

xk = 1 − xp+1

1 − x
. (4.10)

For the sl(3) GPF, the expression is

Z(p, 2) =
p∑
k=0

(k + 1)xk = 1

(1 − x)2
+
px + x − p + 2

(1 − x)2
xp+1 (4.11)

and it can be related to the Z(p, 1) partition function by

Z(p, 2) =
(

1

1!

∂

∂x
x

)
Z(p, 1) =

(
1

1!

∂

∂x
x

)
1 − xp+1

1 − x
. (4.12)

This result can be further generalized. The GPF of sl(n + 1) for any n can be related to the
GPF of sl(2):

Z(p, n) = 1

(n− 1)!

∂n−1

∂xn−1
xn−1Z(p, 1) (4.13)

or equivalently

Z(p, n) = 1

(n− 1)!

∂n−1

∂xn−1
xn−1

p∑
k=0

xk = 1

(n− 1)!

∂n−1

∂xn−1
xn−1 1 − xp+1

1 − x
. (4.14)

Clearly, after the specialization (4.2) the expression (3.11) for the average number of
particles reads

N̄(p, n) = x ∂x lnZ(n, p) (4.15)
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and Ē(p, n) = εN̄(p, n). Another expression follows from (3.13), (4.3) and (4.4):

N̄(p, n) =
( p∑
k=0

k

(
k + n− 1

k

)
xk
)/( p∑

k=0

(
k + n− 1

k

)
xk
)
. (4.16)

Using the definitions of hypergeometric functions, equation (4.16) can be rewritten as

N̄(p, n) =
nx/(1 − x)n+1 − (p + 1)

(
n+p
p+1

)
xp+1

2F1
( 1,n+p+1

p+1 ; x)
1/(1 − x)n − (

n+p
p+1

)
xp+1

2F1
( 1,n+p+1

p+2 ; x) . (4.17)

Applying Euler’s transformation to each of the 2F1-functions yields an expression with
terminating hypergeometric series in the numerator and denominator:

N̄(p, n) =
x
(
n− (p + 1)

(
n+p
p+1

)
xp 2F1

(
p,−n
p+1 ; x))

(1 − x)
(
1 − (

n+p
p+1

)
xp+1

2F1
(
p+1,1−n
p+2 ; x)) . (4.18)

So we find

N̄(p, n) = nx

1 − x

(
p! − (n + p)!

∑n
k=0(−1)kxp+k/[(p + k)k!(n− k)!]

p! − (n + p)!
∑n−1

k=0(−1)kxp+k+1/[(p + k + 1)k!(n− k − 1)!]

)
. (4.19)

The last expression for N̄(p, n) is more appropriate to work with for small values of n,
whereas (4.16) is more suitable for small values of p.

From (3.22) and (4.3) we can also compute the probability P(p, n; li) that li particles are
accommodated on the ith orbital:

P(p, n; li) = 1

Z(p, n)

p−li∑
k=0

(
k + n− 2

k

)
xk+li . (4.20)

Then the average number of particles accommodated on the ith orbital is

l̄i =
p∑
l=0

lP(p, n; l) = 1

Z(p, n)

p∑
l=0

p−l∑
k=0

l

(
k + n− 2

k

)
xk+l . (4.21)

As it should be, the result is independent of the number i of the orbital: l̄1 = · · · = l̄i = · · · =
l̄n ≡ l̄.

Using the binomial identity
r∑
l=0

l

(
r − l + n− 2

r − l

)
= r

n

(
n + r − 1

r

)
. (4.22)

one verifies that the consistency condition N̄(p, n) = nl̄ holds too. Hence

l̄i =
x
(
n− (p + 1)

(
n+p
p+1

)
xp 2F1

(
p,−n
p+1 ; x))

n(1 − x)
(
1 − (

n+p
p+1

)
xp+1

2F1
(
p+1,1−n
p+2 ; x)) i = 1, . . . , n. (4.23)

Other thermodynamical functions follow straightforwardly. Equation (3.24) for the entropy
reduces to

S(p, n) = kB

τ
(ε − µ)N̄(p, n)− kB

τ
) (4.24)

where ) = −τ lnZ(p, n) is the thermodynamical potential (3.26).
Let us consider in some more detail the dependence on the energy of the average number

of particles in the system N̄(p, n), i.e. the distribution function. As an energy variable we take

y = ε − µ

τ
→ x = e−y (4.25)

namely the energy in units of τ . We will consider two extreme cases.
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Figure 1. The graph of N̄(p, 1) for p = 1, 2, 3, 4, 6, 8, 12, 16,∞.

• n = 1 and any p:

N̄(p, 1) = 1

ey − 1
− (p + 1)

e(p+1)y − 1
. (4.26)

Note that at p = 1 one obtains the FD distribution:

N̄(1, 1) = 1

e((ε−µ)/τ) + 1
. (4.27)

In figure 1 we plot N̄(p, 1) for p = 1, 2, 3, 4, 6, 8, 12, 16,∞. The lowest curve (p = 1)
yields the FD distribution. Increasing p from 1 to ∞ one ‘deforms’ it into the BE
distribution (p = ∞):

N̄(∞, 1) = 1

e((ε−µ)/τ) − 1
. (4.28)

• p = 1 and any n:

N̄(1, n) = n

e((ε−µ)/τ) + n
. (4.29)

N̄(1, n) is always smaller then 1, so the system can accommodate at most one
particle. As an example we plot the distribution functions for a system with n =
1, 2, 4, 8, 16, 32, 64, 128 orbitals (figure 2).

The first curve n = 1 (from the left) corresponds to the FD distribution function.
With the increase of the number of orbitals the average occupation number of the system
increases for fixed y. In particular for ε = µ we have that N̄(1, n) = n/(n + 1). All
curves are ‘Fermi-like’ but the half-filling is shifted to the right, at y = ln n.

It should be noted that the curves in figure 2 give the average number of particles in
the system, not on a certain orbital.

The particles described above (p = 1, n > 1) are called hard-core bosons. They
appear naturally in various models of condensed matter physics and nuclear physics (for
more discussions and references see [16]).



10192 A Jellal et al

n=1

n=128

0

0.2

0.4

0.6

0.8

1

–10 –8 –6 –4 –2 2 4 6 8 10y

Figure 2. The graph of N̄(1, n) for n = 1, 2, 4, 8, 16, 32, 64, 128.

5. Equidistant energy levels

Let us now consider the Hamiltonian (2.13) with equidistant energies εi . Denote the gap
between the different energy levels by. > 0. This means that ε2 = ε1 +., ε3 = ε1 + 2. etc,
or

εi = ε1 + (i − 1). (i = 1, 2, . . . , n). (5.1)

Just as in the previous section, we shall assume that µ1 = µ2 = · · · = µn = µ. In this setting
the different orbitals correspond to different energy levels. Following the notation of (3.3), we
have

xi = exp

(
µ− εi

τ

)
= exp

(
µ− ε1

τ

)
exp

(
−.
τ

)i−1

= xqi−1 (5.2)

where we have used the notation

x = x1 = exp

(
µ− ε1

τ

)
and q = exp

(
−.
τ

)
. (5.3)

In order to write down the GPF, we can use (3.9) and the specialization given above:

Z(p, n) =
p∑
k=0

hk(x, qx, q
2x, . . . , qn−1x) = hp(x, qx, q

2x, . . . , qn−1x, 1). (5.4)

The symmetric functions simplify under this specialization. To see this, consider their
generating function (3.7). Since [23, p 26]

1

(1 − xt)(1 − qxt) · · · (1 − qn−1xt)
=

∞∑
k=0

[
n + k − 1

k

]
xktk (5.5)

where
[
m

k

]
denotes the q-binomial coefficient or Gaussian polynomial [23, p 26]:[m

k

]
= (1 − qm)(1 − qm−1) · · · (1 − qm−k+1)

(1 − q)(1 − q2) · · · (1 − qk)
(5.6)

it follows from (3.7) that

hk(x, qx, q
2x, . . . , qn−1x) =

[
n + k − 1

k

]
xk. (5.7)
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Observe that in the limit q → 1, the q-binomial
[
m

k

]
goes to the ordinary binomial coefficient(

m

k

)
. Using (5.7), equation (3.9) implies

Z(p, n) =
p∑
k=0

[
n + k − 1

k

]
xk. (5.8)

Using the q-raising factorials [27]

(a; q)k = (1 − a)(1 − qa) · · · (1 − qk−1a) (5.9)

and the classical q-generalized hypergeometric series, called the basic generalized
hypergeometric series [26, 27], this can be rewritten as

Z(p, n) =
p∑
k=0

(qn; q)k
(q; q)k x

k = 2/1

(
qn, q−p

q−p ; x
)
. (5.10)

The average number of particles in the system follows from (3.13):

N̄(p, n) =
∑p

k=0 k
[
n+k−1
k

]
xk∑p

k=0

[
n+k−1
k

]
xk

= x
∂

∂x
(lnZ(p, n))

(
=τ ∂

∂µ
(lnZ(p, n))

)
. (5.11)

This expression cannot be further simplified.
Another quantity that carries relevant information about the system is the average number

of particles accommodated on a particular orbital. Let l̄i be this average for the ith orbital,
i = 1, 2, . . . , n. Following (3.19), we have

l̄i = 1

Z(p, n)
xi ∂xi (Z(p, n)) (5.12)

in which we have to substitute xi = qi−1x. This expression can be written in the following
more explicit form:

l̄i = 1

Z(p, n)

p∑
r=1

(qi−1x)r
p−r∑
l=0

[
n + l − 1

l

]
xl. (5.13)

The derivation of (5.13), which is not so trivial, is given in the appendix.
The main conclusion from (5.13) is that the ‘population’ of the orbitals depends essentially

on their level i via qi−1, where q = exp(−./τ) < 1: as i grows, the average number
of particles l̄i decreases. In other words, the higher the energy level, the lower the average
number of particles.

If we consider the extreme case p = 1, where the system contains only one particle, and
any n (the other extreme case, any p and n = 1, coincides with the most degenerate case),
then there arises

N̄(1, n) = (1 + q + · · · + qn−1)

eβ(ε1−µ) + (1 + q + · · · + qn−1)
β = 1

τ
. (5.14)

The case q = 1 (. = 0) corresponds to the degenerate case.
For values of q = exp(−./τ) � 1, i.e., for large gaps between the energy levels or very

low temperature, one can neglect all positive powers of q in (5.14). What remains is the FD
distribution:

N̄(1, n) ≈ 1

eβ(ε1−µ) + 1
. (5.15)

Continuing with this extreme case (where p = 1), the expression for the average number
of particles on orbital i reads

l̄i = qi−1

eβ(ε1−µ) + (1 + q + · · · + qn−1)
i = 1, . . . , n. (5.16)
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For very low temperatures, or big ., equation (5.16) reduces to

l̄1 ≈ 1

eβ(ε1−µ) + 1
and l̄i ≈ 0 if i > 1. (5.17)

The latter means that if the system contains a particle, it is ‘sitting’ permanently on the first,
i.e. on the lowest-energy, orbital. This also explains why N̄(1, n) ≈ l̄1.

The expressions for the entropyS(p, n) and the thermodynamical potential)(p, n) follow
from (3.25)–(3.27) and cannot be simplified very much.

6. Two species of particle

We assume in this section that the system under consideration consists of two species of particle.
Those of the first kindA (of the second kindB) have one and the same energy εA and chemical
potential µA (εB and µB). To be more precise, the Hamiltonian of the system is

H = εA

m∑
i=1

Ni + εB
n∑

i=m+1

Ni m = n

2
. (6.1)

For convenience we consider a system with an even number of orbitals: n = 2m,m ∈ N. The
first m orbitals refer to single-particle states of kind A and the remaining m to single-particle
states of kind B.

The probability for the system to be in a state r = (l1, . . . , ln) is given by (3.1), which in
this case reads

P(p, n; r) = x
l1+···+lm
A x

lm+1+···+ln
B

Z(p, n)
(6.2)

where

xA = exp

(
µA − εA

τ

)
xB = exp

(
µB − εB

τ

)
. (6.3)

In order to write down the GPF (3.6) we use the following identity:

hk(x1, . . . , xm, . . . , xn) =
k∑
r=0

hr(x1, . . . , xm)hk−r (xm+1, . . . , xn) (6.4)

which can easily be derived from the generating function (3.7). Then, in view of (4.3),

hk(xA, . . . , xA︸ ︷︷ ︸
m times,

, xB, . . . , xB︸ ︷︷ ︸
m times

) =
k∑
r=0

(
r +m− 1

r

)(
k − r +m− 1

k − r

)
xr1x

k−r
2 .

The latter can also be expressed by means of a hypergeometric function:

hk(xA, . . . , xA︸ ︷︷ ︸
m times,

, xB, . . . , xB︸ ︷︷ ︸
m times

) =
(
k +m− 1

k

)
2F1

(
m,−k

1 −m− k
; x1

x2

)
xk2 . (6.5)

Hence the GPF (3.6) reduces to the following expression:

Z(p, n) =
p∑
k=0

k∑
r=0

(
r +m− 1

r

)(
k − r +m− 1

k − r

)
xr1x

k−r
2 (6.6)

or

Z(p, n) =
p∑
k=0

(
k +m− 1

k

)
2F1

(
m,−k

1 −m− k
; x1

x2

)
xk2 . (6.7)
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An immediate consequence of (3.11) is the expression for the average number of particles
in the system:

N̄(p, n) = (xA ∂xA + xB ∂xB ) lnZ(p; n) = τ(∂µA + ∂µB ) lnZ(p, n). (6.8)

Using (3.13), (6.5) and (6.7), one can write N̄(p, n) in a more explicit form:

N̄(p, n) =
∑p

k=0 k
(
k+m−1
k

)
2F1

(
m,−k

1−m−k ; xA/xB
)
xkB∑p

k=0

(
k+m−1
k

)
2F1

(
m,−k

1−s−k ; xB/xB
)
xkB

. (6.9)

From (6.2) one derives the probability P(p, n;MA,MB) for the system to contain MA

particles of kind A and MB particles of kind B:

P(p, n;MA,MB) = 1

Z(p, n)

(
MA +m− 1

MA

)(
MB +m− 1

MB

)
x
MA

A x
MB

B . (6.10)

Consequently

P(p, n;MA) = 1

Z(p, n)

p−MA∑
MB=0

(
MA +m− 1

MA

)(
MB +m− 1

MB

)
x
MA

A x
MB

B (6.11)

yields the probability for the system to accommodate MA particles of kind A. Therefore, the
thermal average of the particles of kind A reads

N̄(p, n)A = 1

Z(p, n)

p∑
MA=0

MA

p−MA∑
MB=0

(
MA +m− 1

MA

)(
MB +m− 1

MB

)
x
MA

A x
MB

B . (6.12)

Formulae (6.11) and (6.12) can be re-expressed in terms of a hypergeometric function:

P(p, n;MA) = 1

Z(p, n)

(
MA +m− 1

MA

)(
1

(1 − xB)m
− x

p−MA+1
B

(
m + p −MA

m− 1

)

× 2F1

(
1,m + p −MA + 1

p −MA + 2
; xB

))
x
MA

A (6.13)

and

N̄(p, n)A = 1

Z(p, n)

p∑
MA=0

MA

(
MA +m− 1

MA

)(
1

(1 − xB)m
− x

p−MA+1
B

(
m + p −MA

m− 1

)

× 2F1

(
1,m + p −MA + 1

p −MA + 2
; xB

))
x
MA

A . (6.14)

More formally, we can also write

N̄(p, n)A = xA ∂xA lnZ(p; n) = τ ∂µA lnZ(p, n). (6.15)

The thermal averages Ē(p, n)A and Ē(p, n)B of the particles of kindA andB are evident:

Ē(p, n)A = εAN̄(p, n)A Ē(p, n)B = εBN̄(p, n)B (6.16)

and therefore

Ē(p, n) = Ē(p, n)A + Ē(p, n)B (6.17)

yields the average energy of the system.
From (3.24)–(3.27) the expression for the entropy follows:

S(p, n) = kB

τ
(εA − µA)N̄(p, n)A +

kB

τ
(εB − µB)N̄(p, n)B − kB

τ
) (6.18)

where ) = −τ lnZ(p, n) is the thermodynamical potential.
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Figure 3. The graph of N̄(4, 4) for yA and yB in the range [−5, 5].
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Figure 4. The graph of N̄A(4, 4) for yA and yB in the range [−5, 5].

It is instructive to consider an example in more detail. Let us fix n = 4 and also take
p = 4. We shall draw a graph of the average number of particles N̄(p, n) = N̄(4, 4) (see
equation (6.9)), as a function of two energy variables yA and yB associated with the two kinds
of particle of the system, i.e.

yA = εA − µA

τ
yB = εB − µB

τ
. (6.19)

This graph is given in figure 3. Clearly, this graph is symmetric with respect to yA and yB .
Let us now also consider, for this same example, the graph of the average number of

particles of kind A, i.e. N̄A(4, 4). The expression follows from (6.12). The graph is given in
figure 4.

Comparing figure 3 with 4, one can make a distinction between four different regions in
terms of the energy variables yA and yB . The sector (yA < 0, yB > 0) is populated mostly with
particles of kind A, and the sector (yA > 0, yB < 0) mostly with particles of kind B. In the



Macroscopic properties of A-statistics 10197

sector (yA < 0, yB < 0), the populations of particles of kindA and of kindB are approximately
the same. Finally, the sector (yA > 0, yB > 0) is essentially unpopulated. The average number
of accommodated particles is never bigger than 4, as should be the case, since p = 4.

7. Concluding remarks

In the present paper we have studied the thermal properties of ‘free’ particles, which interact
only via statistical interaction. The latter stems from the restrictions imposed by the Pauli
principle: the system under consideration cannot accommodate more than p particles if the
order of the statistics is p. This property holds independently of the number of orbitals; there
can even be infinitely many.

By definition, the A-statistics is closely related to certain (more precisely, symmetric or
Fock) representations of the Lie algebra sl(n + 1), including n = ∞. Also, the A-statistics
belongs to the class of exclusion statistics as defined in [28, section 5]. Okubo [29] has also
reformulated this in the language of Lie-triple systems. In [16] we have argued that under
certain natural assumptions the A-statistics can be interpreted as an exclusion statistics in the
sense of Wu [7].

In addition to the general case, we have considered some specific examples. In particular
we have shown that for n = 1 and any p the FD distribution function (n = 1, p = 1) deforms
into the BE distribution function (n = 1,p = ∞) with the growth ofp; see figure 1. In this case
the A-statistics reduces to the Gentile statistics [1] (see also [30]). In the more general case of
any number of orbitals n the above picture is modified. In the limit p → ∞ one obtains again
the Bose distribution function N̄(p = ∞, n) = nx/(1−x). However, atp = 1 the distribution
function N̄(p = 1, n) is a distribution function of hard-core fermions—see (4.29)—and not
of fermions.

Another observation to mention is for the case with equidistant energy levels. Without
any input from quantum groups it turns out that the GPF is a q-deformation of the GPF of
the most degenerate case. More precisely, the equidistant GPF (5.8) is obtained from the
‘nondeformed’ GPF (4.4) by a q-deformation of the binomial coefficients. Another property
that it is natural to expect, demonstrated here for p = 1, is that at very low temperatures the
average number of particles of the system is the same as the average number of particles on the
lowest energy level, which means that all allowed particles (in the general case p) ‘condense’
on the lowest level.

Despite the fact that the A-statistics does not belong to the class of deformed Bose
statistics, it yields a good approximation to Bose statistics. Also, the Fock spaces do not
contain states with negative norm. Therefore, parallel to quons, the A-statistics with large
values of p is a good candidate for the description of small violations of Bose statistics
in quantum field theory. Like for quons [24] however, we do not know how to satisfy
the locality condition in relativistic quantum field theory. Therefore, one cannot expect to
derive relations between charge conjugation, unitarity and statistics as in [31]. It would
be interesting to see whether such relations can be derived in the frame of causal A-
statistics [32].

Finally we point out that our considerations are incomplete in the sense of traditional
thermodynamics, because we have not introduced the concept of volume and hence of pressure
etc. In our picture the volume can be introduced in several ways. One natural way would be to
relate the order of the statistics p to a unit volume V : if p is the maximal number of particles
to be accommodated in V , then it is natural to assume that twice more particles could be
accommodated in the volume 2V . This is one, but not the only, plausible possibility. We shall
return to this issue elsewhere.
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Appendix. Proof of equation (5.13)

First, we wish to find an expression for hk(x1, . . . , x̂i , . . . , xn). The notation x̂i means that xi
has been removed from the list of variables (x1, . . . , xn), so hk(x1, . . . , x̂i , . . . , xn) stands for
a symmetric function in n− 1 variables. Multiplying (3.7) by (1 − xit), it follows easily that

hk(x1, . . . , x̂i , . . . , xn) = hk(x)− xihk−1(x)

where hk(x) ≡ hk(x1, x2, . . . , xn).
Consider now the general expression for l̄i , as given in (3.19):

l̄i = 1

Z(p, n)
xi ∂xiZ(p, n)

or, using (3.4),

xi ∂xiZ(p, n) =
∑

0�l1+l2+···+ln�p
lix

l1
1 x

l2
2 · · · xlnn

=
p∑
li=0

lix
li
i

∑
0�l1+···+li−1+li+1+···+ln�p

x
l1
1 · · · xli−1

i−1x
li+1
i+1 · · · xlnn

=
p∑
li=0

lix
li
i

p−li∑
k=0

∑
(l1+···+li−1+li+1+···+ln=p−k)

x
l1
1 · · · xli−1

i−1x
li+1
i+1 · · · xlnn

=
p∑
li=0

lix
li
i

p−li∑
k=0

hk(x1, . . . , x̂i , . . . , xn)

=
p∑
li=0

lix
li
i

p−li∑
k=0

(hk(x)− xihk−1(x)).

In this last expression, we can make the specialization xi = qi−1x. From (5.7) we know already
how the functions hk(x) specialize, so there arises (replacing also the summation variable li
by l)

p∑
l=0

l(qi−1x)l
p−l∑
k=0

([
n + k − 1

k

]
xk − qi−1x

[
n + k − 2

k − 1

]
xk−1

)
.

Replacing qi−1 by a new variable α, this can be rewritten as
p∑
l=0

p−l∑
k=0

lαl
([
n + k − 1

k

]
− α

[
n + k − 2

k − 1

])
xk+l .

Collecting equal powers of α, this reduces to
p∑
l=1

αl
p−l∑
k=0

[
n + k − 1

k

]
xk+l . (A.1)

Putting back α = qi−1 gives the relation (3.69), which we wanted to prove.
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Observe that one summation can be performed in (A.1):

p∑
l=1

αl
p−l∑
k=0

[
n + k − 1

k

]
xk+l =

p−1∑
k=0

[
n + k − 1

k

]
xk

p−k∑
l=1

(αx)l

=
p−1∑
k=0

[
n + k − 1

k

]
xk
(
αx − (αx)p−k+1

1 − αx

)
.

Replacing again α by qi−1 yields an alternative expression for (5.13).
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